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Abstract. In this work a method is developed for analyzing time series of periodically driven stochastic
systems involving time-delayed feedback. The proposed data-analysis method yields dynamical models in
terms of stochastic delay differential equations. On the basis of these dynamical models differential effects
of driving forces and time-delayed feedback forces can be identified.

PACS. 02.30.Ks Delay and functional equations – 05.45.Tp Time series analysis – 87.19.St Movement
and locomotion

1 Introduction

An important task in modern physics is the understanding
and modeling of complex systems that operate far from
thermal equilibrium. However, a microscopic bottom-up
description of such systems is mathematically unfeasible
because complex nonequilibrium systems typically exhibit
a huge number of degree of freedoms. In contrast, a macro-
scopic top-down description in terms of order parameter
equations can often be obtained [1–4]. In general, com-
plex systems exhibit fluctuations because the internal pro-
cesses that govern their functioning are intrinsically noisy
and because they are in contact with their environments.
Therefore, order parameter equations often assume the
form of stochastic differential equations such as Langevin
equations.

In this study, we will exploit this level of description
of stochastic differential equations in order to study pe-
riodically forced feedback control systems that exhibit
fluctuations. Such systems involve both periodic driving
forces and time-delayed feedback loops in addition to noise
sources that give rise to fluctuations. Periodic driving
forces occur in various systems like seasonally driven bio-
logical systems and periodically driven systems in physics,
biology, and engineering sciences. Periodically forced feed-
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back control systems form an important subclass of such
systems. In such a system the feedback control tends to
establish a particular desired relationship between the sys-
tem output and the driving force. Stochastic feedback
systems that are periodically driven have been discussed
frequently in the literature (e.g. in the context of linear
response theory [5], stochastic resonance [6], and peri-
odically forced thermal ratchet models for Brownian mo-
tors [7–13]). However, feedback loops involve time-delays.
Such time-delayed feedback systems have been discussed
in biology [14–24], physics [25–36], and engineering appli-
cations [37–43]. In general, they are described by delayed
ordinary differential equations and exhibit a variety of in-
teresting phenomena such as delay-induced bifurcations
of fixed points to oscillatory and chaotic solutions [15,
16,25,28], delay-induced resonances and re-entrant bifur-
cations [44], and delay-induced non-invasive stabilization
processes [27]. However, in most studies on driven noisy
feedback systems these time-delays have been neglected
(for an exception see e.g. [45]). In particular, from the
viewpoint of time series analysis [46,47] the question arises
how to identify the impacts of the periodic driving forces
and of time-delayed feedback loops on the basis of time
series data.

For example, in order to gain insight into the mech-
anisms underlying coordinated motor behavior it is most
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helpful to study rhythmic limb movements that are paced
by a metronome beat or synchronized with an oscil-
lating target [48–55]. In such experimental setups, the
actually performed movement patterns arise again from
an interplay of a periodic driving force (the metronome
beat or oscillating target) and a control process that in-
volves a time delay in terms of a neurophysiological signal
transmission delay or a reaction time delay. Likewise, we
may think of the engineering problem to construct anti-
roll devices for ships. In general, ship rolling arises from
periodically emerging water waves. This rolling motion
is usually suppressed by means of a time-delayed control
mechanism that involves fin movements or the loading and
unloading of anti-roll water tanks [56,57]. The still remain-
ing (small amplitude) rolling motions of the ship result
from the interplay of a periodic driving force (i.e. the wa-
ter waves) and a time-delayed control mechanism (i.e. the
anti-roll device). Finally, studies on forced thermal ratchet
models showed that propagation of Brownian motors is
probably due to the interplay between periodically time-
dependent driving forces, spatially periodic, asymmetric
potential forces, and thermal fluctuating forces [7–13].

In principle, time series analysis could make an essen-
tial contribution in studying how periodic driving forces
and time-delayed control processes may interact with each
other. However, to this end, a data-analysis method needs
to be developed that is able to distinguish between the ef-
fects of these two qualitatively different processes. More-
over, the data-analysis method in question needs to be
able to deal with noisy data.

In Section 2 we will propose a data-analysis method
which satisfies these needs. The proposed data-analysis
method applies to a broad class of drift-diffusion processes
that will be defined in Section 2.1. In several earlier stud-
ies it has been shown how to estimate the coefficients of
similar drift-diffusion processes from noisy data [58–66]. In
particular, it has been shown how to derive the relevant
drift and diffusion coefficients for periodically driven noisy
systems [67] and for noisy systems involving time-delayed
feedback loops [68], see Figure 1. Moreover, several data-
analysis techniques for time-delayed deterministic systems
have been proposed (see [69–71] and references therein).
In Section 2.2 we will show how to determine these coeffi-
cients for noisy systems that involve both a periodic driv-
ing force and a time-delayed feedback force. That is, the
missing link (see Fig. 1) between the analysis of periodi-
cally driven and time-delayed systems will be established.
In Section 2.3 a self-consistency test based on first-order
statistical properties will be discussed. The purpose of this
self-consistency test is to show whether or not the a priori
hypothesis is correct at all that a given process belongs to
the aforementioned class of drift-diffusion processes.

In Section 3 we will illustrate the data-analysis method
by means of some examples. Examples of first-order dy-
namical systems will be presented in Section 3.1. An ex-
ample of a second-order dynamical system that has been
proposed to describe paced tapping will be discussed in
Section 3.2.
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Fig. 1. Solved (!) and unsolved (?) problems. The symbols
Γ , ω, τ represent different kinds of systems. Γ : noisy systems.
ω periodically driven systems. τ time-delayed system. A data-
analysis method that is dealing with Γ and ω has been pro-
posed in [67]. A method that is dealing with Γ and τ has been
developed in [68]. The case Γ , ω, and τ is discussed in the
present study.

2 Method

2.1 Drift-diffusion processes

In this study we consider stochastic processes that satisfy
non-autonomous stochastic delay differential equations of
first or higher order. For the sake of clarity we will demon-
strate the details of the proposed technique for first-order
dynamical systems. Accordingly, we assume that we are
dealing with noisy periodically-driven time-delayed sys-
tems that can be described by a univariate stochastic de-
lay differential equation of the form

d
dt

X = h (X, Y, F (t)) + g (X, Y, F (t))Γ (t). (1)

Here, X(t) denotes a random variable that describes the
state of the system. Y (t) is the corresponding time-delayed
(or retarded) state variable. That is, we have Y (t) =
X(t − τ), where τ denotes the time delay. The function
F (t) describes a periodic driving force with period T (i.e.
we have F (t) = F (t + T )). In equation (1) the drift func-
tion h describes the deterministic evolution of the state
variable. The term gΓ describes a fluctuating force or
a noise source with g corresponding to the noise ampli-
tude. The function Γ (t) is the Langevin force [5] with
〈Γ (t)〉 = 0 and 〈Γ (t)Γ (t′)〉 = 2δ(t−t′), where δ(·) denotes
the Dirac delta function and 〈·〉 represents an ensemble av-
erage. Note that in order to interpret the product gΓ we
will use the Itô-interpretation for stochastic integrals [72]
which applies also to time-delayed systems [73,74].

Equation (1) can be regarded as a time-delayed
Langevin equation. In particular, if h and g do not de-
pend on the retarded variable Y , then equation (1) reduces
to an ordinary Langevin equation. In general, Langevin
equations describe continuous but non-differentiable pro-
cesses [5] such that strictly speaking the differential quo-
tient dX/dt is not well-defined. In order to avoid the no-
tation dX/dt, one may cast equation (1) into the form
dX = hdt + gdB, where B is a Wiener process with vari-
ance proportional to dt. Nevertheless, in our study and in
line with a comprehensive part of the literature on stochas-
tic processes, we will use the notation dX/dt that nicely
indicates that equation (1) is an evolution equation.
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In order to obtain a complete description of a delay
system as defined by equation (1) we need to specify the
initial condition x(t) for t ∈ [−τ, 0]. The fact that the
initial condition corresponds to a function and not to a fi-
nite set of parameters indicates that the phase space of the
dynamics defined by equation (1) is not one-dimensional
but infinitely large. For example, replacing x(t − τ) by
exp{−τd/dt}x(t) and truncating the Taylor series of the
exponential function after p terms, we realize that equa-
tion (1) corresponds to a p-dimensional system with p ini-
tial conditions in the limit p → ∞.

Being aware of the abovementioned difficulties con-
cerning the differentiability and the initial conditions of
the stochastic processes under consideration, we can now
proceed and simplify the notation of equation (1) even
further. Accordingly, we write equation (1) as

d
dt

X = h (X, Y, t) + g (X, Y, t)Γ (t). (2)

The conditional probability density P (x, t|x′, t′; y, t−τ) =
〈δ(x − X(t))〉|x′=X(t′),y=X(t−τ) satisfies a delay Fokker-
Planck equation of the form [74]

∂

∂t
P (x, t|x′, t′; y, t − τ) = L̂ P (x, t|x′, t′; y, t − τ) (3)

with the Fokker-Planck operator

L̂ = − ∂

∂x
h(x, y, t) +

∂2

∂x2
D(x, y, t) (4)

and D(x, y, t) = g2(x, y, t). The coefficient D will be re-
ferred to as diffusion coefficient.

2.2 Drift-diffusion estimation

2.2.1 Basics

Following [74], we can show that the relations

h(x, y, t) = lim
ε→0

1
ε
〈X(t+ε)− x〉

∣
∣
∣
∣
X(t)=x,X(t−τ)=y

,

(5)

D(x, y, t) = lim
ε→0

1
2ε

〈(X(t+ε)− x)2〉
∣
∣
∣
X(t)=x,X(t−τ)=y

.

(6)

hold. In general, the conditional averages in equations (5)
and (6) have to be computed from ensembles of trajecto-
ries X(t). However, we would like to exploit the periodicity
of the problem at hand and evaluate time averages instead
of ensemble averages. Therefore, we will discuss next how
the ensemble averages can be replaced by appropriately
defined time averages.

2.2.2 Implementation for periodic driving forces

In order to simplify equations (5) and (6) we assume that
we are dealing with a periodic process ([75], Chap. 5) with
period T . That is, all (first- and higher-order) statistical
quantities become invariant against time shifts of period
T . As shown in [67] the ensemble averages in equations (7)
and (8) can then be replaced by stroboscopic time averages
such that we obtain

h(x, y, tk) = lim
ε→0

1
ε
〈X(tk + ε) − x〉

∣
∣
∣
∣
X(tk)=x,X(tk−τ)=y

,

(7)

D(x, y, tk)= lim
ε→0

1
2ε

〈(X(tk + ε) − x)2〉
∣
∣
∣
X(tk)=x,X(tk−τ)=y

.

(8)

The variable tk ∈ T describes a particular time point in
the period T or a particular phase with respect to the
periodic driver. Let T (1), T (2), T (3) and so on denote sub-
sequent intervals of length T . Stroboscopic time averaging
means that we average across these intervals T (i) for every
fixed time point tk.

2.2.3 Numerical implementation

In order to implement equations (7) and (8) on a com-
puter, we introduce the three dimensional phase space
Ω which is spanned by the state variable x, the time-
delayed state variable y, and the periodic time coordinate
t mod T . That is, a point in Ω is described by the vector
q = (x, y, t mod T ). The drift and diffusion coefficients
given by equations (7) and (8) are functions defined on
this phase space Ω.

First of all, one has to discretize Ω into bins. The bin-
ning was realized with equidistant intervals for ∆x, ∆y,
and ∆t, so that a volume element is given by

∆Ωijk = ([xi, xi + ∆x), [yj , yj + ∆y), [tk, tk + ∆t)) . (9)

In addition, we use finite boundaries for x and y (i.e.,
we evaluate x and y only in a bounded domain x, y ∈
[xmin, xmax]). In doing so, Ω is discretized into a finite
number of volume elements ∆Ω. We further introduce the
indicator function χ

χijk(q) =
{

1, q ∈ ∆Ωijk,
0, otherwise. (10)

With the help of the indicator-function (10) one can for-
mulate a discretized approximation for drift and diffusion:

h(x, y, t) =
∑

ijk

hijk χijk(q) + O(∆x, ∆t), (11)

D(x, y, t) =
∑

ijk

Dijk χijk(q) + O(∆x, ∆t). (12)

Next, we implement the conditional averages occurring in
equations (7) and (8) into a numerical algorithm over a
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finite time series. To this end, we consider data recorded
with a constant sampling time δt (or sampling frequency
f = 1/δt) at time points tn = nδt with n = 1, . . . , N .
Accordingly, we discretize the delay like τ = mδt. As
a result, we obtain for every data sample n a vector
qn = (Xn, Xn−m, tn mod T ) with X(tn) = Xn and
X(tn − τ) = Xn−m. The coefficients hijk and Dijk can
then be estimated from hijk = h̃ijk+O(δt, N−1/2), Dijk =
D̃ijk + O(δt, N−1/2) and

h̃ijk =
1
δt

N−1∑

n=0
(Xn+1 − Xn)χijk(qn)

N−1∑

n=0
χijk(qn)

, (13)

D̃ijk =
1

2δt

N−1∑

n=0
(Xn+1 − Xn)2 χijk(qn)

N−1∑

n=0
χijk(qn)

. (14)

The error terms of order δt and 1/
√

N vanish in the limits
δt → 0 and N → ∞. Combining equations (11), (12) and
equations (13), (14), we obtain a numerical implementa-
tion of equations (7) and (8) given by

h(x, y, t) =
∑

ijk

h̃ijk χijk(q) + O(∆x, ∆t, δt, N− 1
2 ),

(15)

D(x, y, t) =
∑

ijk

D̃ijk χijk(q) + O(∆x, ∆t, δt, N− 1
2 ).

(16)

Further discussions on the error terms can be found
in [76–79]. Measurement errors are also discussed
in [80,81].

2.3 Test of self-consistency

In order to test our a priori hypothesis that a given
time series can be reproduced from a drift-diffusion model
of the form (1) we compare statistical quantities of the
original time series with those computed from the corre-
sponding drift-diffusion model (1). In what follows we will
consider only first-order statistical quantities. For tests
involving higher-order statistical quantities the reader is
referred to [58,82].

A general first-order statistical quantity of a stochas-
tic process is the probability density of that process.
All moments and expectation values can be computed
from that density measure. For periodically driven sys-
tems that exhibit time-periodic stochastic processes the
probability density is a periodic function of time (see
Sect. 2.2.2). Therefore, in the present context of periodi-
cally driven systems it is useful to compare time-periodic
probability densities computed from original data with
time-periodic probability densities computed from the
drift-diffusion models (1) derived from the original data.

To this end, however, we need to re-normalize probabil-
ity densities with respect to the domain [rmin, rmax] on
which reliable estimates for the drift and diffusion coef-
ficients of the stochastic models are available1. For ex-
ample, let Porg(x, t) with Porg(x, t) = Porg(x, t + T ) de-
note the time-periodic probability density computed from
an original data set involving a state variable x defined
on the real number line. Let Prec(x, t) with Prec(x, t) =
Prec(x, t + T ) denote the probability density computed
from a drift-diffusion model (1) that was derived from
that data set using the data-analysis method described in
Sections 2.2.1 – 2.2.3. Consequently, the probability densi-
ties Porg(x, t) and Prec(x, t) are normalized to unity like
∫ ∞
−∞ Porg(x, t) dx = 1 and

∫ rmax

rmin
Prec(x, t) dx = 1. In or-

der to compare Porg with Prec on the domain [rmin, rmax]
we first compute the re-normalization factor M(t) =∫ rmax

rmin
Porg(x, t) dx < 1 and subsequently compute the re-

normalized distribution P ′
org = Porg/M(t). By definition,

P ′
org is normalized to unity on the domain [rmin, rmax] just

as Prec. Therefore, we can compare probability densities
related to the original data and the reconstructed data on
the basis of the distributions P ′

org and Prec. Finally, we
note that this test belongs to the class of self-consistency
tests because in this test we first derive drift-diffusion
models of the form (1) assuming that our a priori hypoth-
esis is correct and subsequently assess the correctness of
the hypothesis.

3 Examples

Let us illustrate explicitly how the proposed data-analysis
technique can be applied to analyze noisy systems in-
volving periodic drivers and time delays. To this end, we
will use computer generated data. The first two examples
will be concerned with data computed from two univari-
ate benchmark models of time-delayed noisy systems with
additive and parametric driving forces, see Section 3.1.
In the last example we analyze computer generated data
from a multivariate dynamical model that has been suc-
cessfully applied to describe human tracking movements
under time-delayed feedback control, see Section 3.2.

3.1 First order dynamical systems

3.1.1 Additive sinusoidal driving force

The first example is an Ornstein-Uhlenbeck process sub-
jected to a time-delayed feedback loop and an additive
sinusoidal driver described by

d
dt

X = −aX − bY + c sin (ωt)
︸ ︷︷ ︸

h(X, Y, F (t))

+
√

QΓ (t) (17)

with a, b, c > 0. In equation (17) ω = 2π/T denotes
the frequency of the driver and Q describes the noise

1 Note that in general we have [rmin, rmax] ⊂ [xmin, xmax].
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Fig. 2. Drift estimates h for computer-generated data related to model (17) with additive driver and time-delayed feedback.
Panel (a): h versus x for constant t and several parameters y. Panel (b): h versus y for constant t and several parameters x.
Symbols represent estimates. Solid lines correspond to the original functions used to generate the data. Error bars correspond
to one standard deviation of the estimates.
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Fig. 3. Drift estimates h for the model (17). Panel (a): h versus t for constant y and several parameters x. Panel (b): h versus
t for constant x and several parameters y. Notations as in Figure 2.

amplitude. The time-delayed Ornstein-Uhlenbeck process
without driving force (i.e. c = 0) has been investigated in
several studies [83–88]. In this example the drift can be
decomposed into three additive components

h(X, Y, F (t)) = hx(X) + hy(Y ) + F (t) (18)

that reflect the impacts of a non-delayed restoring
force hx, the time-delayed feedback force hy, and the pe-
riodic driving force F .

Using a modified Euler forward method [89], we gener-
ated a time series from the model (17) composed of N data
points Xn (parameters a = b = c = Q = 1, T = 2.56,
τ = 1, N = 109, δt = 0.01).

We analyzed the computer generated data set on a
domain [xmin, xmax] with xmin = −π and xmax = π. The
phase space Ω(x, y, t) = [−π, π] × [−π, π] × [0, T ] was di-
vided into 323 equidistant bins ∆Ωijk , see Section 2.2.3.
That is, we had ∆x = ∆y = 2π/32 and ∆t = T/32. In or-

der to distinguish between the impacts of the forces hx, hy,
and F (t) we computed h from equation (15). The recon-
struction of h is shown in Figures 2 and 3. Figure 2 shows
h as a function of x for fixed values of y and t (panel (a)).
In panel (b) the drift h as a function of y for fixed values
of x and t is shown. That is, panel (a) reflects the behavior
of hx(x), whereas panel (b) depicts the behavior of hy(y).
Figure 3 shows h as a function of t for fixed values of x
and y. That is, Figure 3 primarily reveals the impact of
F (t). In Figures 2 and 3 both reconstructions of the drift
h based on equation (15) are shown and the correspond-
ing original functions h. We see that the reconstructed
functions are good approximations of the original ones. In
general, the graphs shown in Figures 2 and 3 illustrate how
the drift h(x, y, t) looks like in terms of one-dimensional
cuts through the three-dimensional phase space Ω.

Assuming that we had no a priori knowledge about
the underlying dynamical model, we could conclude on
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Fig. 4. Self-consistency test for the reconstruction of the model (17). Panel (a): reconstructed (symbols) and original (solid
lines) probability densities Prec and P ′

org for several time points tk. Panel (b): contour plot of the function Prec(x, t) (solid
lines) and P ′

org(x, t) (dashed lines) in the (x, t) plane. Each line represents a constant value C. That is, lines are defined by
C = Prec(x, t) and C = P ′

org(x, t). C values increase (decrease) in the left (right) part of the contour plot by ∆C (∆C = 0.2).

the basis of Figure 2b and Figure 3 that the dynamics in-
volves a linear time-delayed feedback loop hy(y) = λy and
a periodic driving force F (t) = A sin(ωt + Φ). Moreover,
we could determine the parameters λ, A, Φ from the graphs
shown in Figure 2b and Figure 3 using, for example, re-
gression analysis and least square fits [66,77,78,90,91].

The result of the self-consistency test (see Sect. 2.3)
for the analyzed data set is shown in Figure 4. In the self-
consistency test we neglected drift estimates that showed
for fixed t relatively large standard deviations (see error
bars in Fig. 2, panels (a) and (b)). More precisely, the self-
consistency test was performed on the domain [rmin, rmax]
with rmin = xmin+∆x and rmax = xmax−∆x. In panel (a)
of Figure 4 the probability densities P ′

org and Prec are
shown for several time points t. We found that the re-
constructed probability densities Prec(x, t) were good ap-
proximations of the original probability density P ′

org(x, t).
In panel (b) of Figure 4 contour plots of P ′

org(x, t) and
Prec(x, t) in the (x, t) plane are shown. Again, Prec(x, t)
and P ′

org(x, t) were almost identical.

3.1.2 Parametric sinusoidal driving force

In the next example we study a multiplicative coupling be-
tween the time-delayed coordinate and the driving force.
That is, we have a parametric excitation of a time-delayed
feedback loop. A fundamental model that can capture this
kind of coupling reads

d
dt

X = −aX + bY sin (ωt)
︸ ︷︷ ︸

h(X, Y, F (t))

+
√

QΓ (t) (19)

for a, b, Q > 0. Just as in the previous example, we
first solved equation (19) numerically in order to gener-
ate a time series. The thus obtained time series contained
N data points Xn (parameters a = b = Q = 1, T = 2.56,
τ = 1, N = 109, δt = 0.01).

The drift h in the model (19) can be cast into the form

h(x, y, F (t)) = hx(x) + hy(y)F (t). (20)

In order to reveal this general structure and in particu-
lar to extract the multiplicative coupling hy(y)F (t) from
the data set {X1, . . . , XN} we computed h from equa-
tion (15). To this end we used the same phase space and
the same phase space discretization as in the previous ex-
ample. The result of our analysis is shown in Figures 5
and 6. Figure 5a shows the drift as a function of x for
fixed y and t and reflects the term hx(x). Figure 6b shows
h(x, y, F (t)) as a function of t for x ≈ 0 and several val-
ues of y. From Figure 6b it is evident that the data set
involves a time-dependent part F (t) given by a sine func-
tion with the time-delayed coordinate y as an amplitude.
That is, Figure 6b shows the multiplicative interplay be-
tween the time-delayed feedback force and the periodic
driving force. In Figure 6 the drift is plotted as a function
of the time-delayed coordinate y for fixed t and x, respec-
tively. In panel (a) the parameter x is varied, whereas in
panel (b) the parameter t is varied. The drift h(x, y, F (t))
defined on the (y, t) plane for fixed x is shown in Figure 7.
Panel (a) nicely illustrates the multiplicative nature of the
coupling between the driver and the feedback. Panel (b)
shows h(x, y, F (t)) for fixed x in terms of a contour plot.
In all panels of Figures 5 and 6 reconstructions of the drift
h based on equation (15) are shown as well as their corre-
sponding original functions. We see that our data-analysis
was able to reconstruct the original functions with a high
degree of accuracy. In addition, the self-consistency test
revealed that Prec was virtually equivalent to P ′

org on the
scale shown in Figure 8.
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Fig. 5. Drift estimates h for the model (19) with multiplicative coupling between driving force and time-delayed feedback force.
Panel (a): h versus x for constant t and several parameters y. Panel (b): h versus t for x = 0.096 and several parameters y.
Notations as in Figure 2.
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210 The European Physical Journal B

a) b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2 -1  0  1  2

f s
t(x

,t k
)

x [a.u.]

time series
verification

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

-3.0 -2.0 -1.0  0.0  1.0  2.0  3.0

t [
s]

x [a.u.]

Fig. 8. Self-consistency test for data computed from the model (19). Panel (a): reconstructed (symbols) and original (solid
lines) probability densities Prec and P ′

org for two different time points tk. Panel (b): contour plots of Prec(x, t) (solid lines) and
P ′

org(x, t) (dashed lines) in the (x, t) plane (∆C = 0.015; for notations see Fig. 4).

3.2 Second-order dynamical systems and paced
tapping

We now turn from first-order dynamical models of the
form (2) to second-order dynamical models given by

Ẍ = h(X, Ẋ) + u(Y, t) +
√

QΓ (t). (21)

In this context, we study data generated from a model
that can be cast into the form (21). The model in ques-
tion describes acoustically paced human tapping, that is,
a particular class of coordinated movements. The study
of coordinated movements in general has revealed many
interesting insights into the organization of human motor
control [48–51,92–95]. In addition, from a theoretical point
of view it may be argued that the principles of nonlinear
physics can be applied to motor control systems produc-
ing coordinated movements [2–4,96,97]. Therefore, coor-
dinated movements in general and paced tapping in partic-
ular are of interest for movement scientists and physicists
alike.

A sophisticated model describing the finger position x
during tapping reads [98]

Ẍ = aẊ − Ẋ3 − ẊX2 − X + β [sin(ωt) − Y ]2 +
√

Q Γ (t)
(22)

with a, β, Q > 0. In the absence of a stimulus (i.e. for
β = 0) the model describes self-paced tapping in terms of a
nonlinear Van der Pol-Rayleigh oscillator. In the presence
of a stimulus (i.e. for β > 0) the sine-term represents the
impact of the periodic metronome beats. According to the
tapping model (22), the motor control system compares
the input stimulus sin(ωt) with the time-delayed actual
performance Y (t) = X(t − τ), where τ corresponds to
the sensory delay of the system [98]. Finally, the additive
fluctuating force with the noise amplitude Q is assumed to
describe perturbations arising due to neural background
activity.

By means of the position and velocity variables X and
V , equation (22) can be equivalently expressed as

Ẋ = V, (23)

V̇ = V (a − X2) − V 3 − X
︸ ︷︷ ︸

h(x, v)

+ β [sin(ωt) − Y ]2
︸ ︷︷ ︸

u(y, t)

+
√

Q Γ (t).

(24)

By analogy to the data-analysis method discussed in Sec-
tion 2.2.1 the drift term h(x, y)+u(y, t) can be determined
from a bivariate time-series {X(tn), V (tn), n = 1, . . . , N}.
To this end, a stroboscopic time averaging based on the
velocity increments V (t + ε) − V (t) can be used in the
following way:

h(x, v) + u(y, tk) =

lim
ε→0

1
ε
〈V (tk + ε) − v〉

∣
∣
∣
∣
X(tk)=x,X(tk−τ)=y,V (tk)=v

(25)

(see also Eq. (7)). As result one obtains the total drift
term h(x, y) + u(v, t). Due to the additional velocity vari-
able the total drift term is defined on a four-dimensional
phase space. This implies that in order to obtain accu-
rate estimates for the drift term data sets are required
that densely fill out this four-dimensional space, at least
to a certain extent. That is, much more data points are
required as in the case of the first-order dynamical models
defined on three-dimensional phase spaces, see Section 3.1.

In what follows, we exploit our a priori knowledge
that the total drift is composed of two components h
and u that add up in an additive fashion htot(x, v, y, t) =
h(x, v) + u(y, t). In line with previous studies [99,100] we
will show next how the components h(x, v) and u(y, t)
can be estimated separately using a two-step approach.
It is clear that such a two-step approach requires fewer
data points because the individual components h(x, v) and
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Fig. 9. Reconstruction of the drift component h(x, v) of the second-order dynamical tapping model (24) in the (x, v) plane.
Panel (a): three-dimensional surface plot. Panel (b): contour plot with ∆C = 0.5. Solid lines represent reconstruction estimates.
Dashed lines correspond to the original function h(x, v).

u(y, t) are defined only on two-dimensional phase spaces.
Let us elaborate on this two-step approach.

In the first step, a time series {Xa(tn), V a(tn), n =
1, . . . , Na} is evaluated that is recorded from the system
defined by equation (21) in the absence of a feedback con-
trol and external driving. That is, in this case we have
u = 0. In the context of human tapping, time series record-
ings of self-paced tapping (β = 0) have to be evaluated.
From the velocity increments V a(t+ε)−V a(t) of such time
series the drift term h(x, v) can be computed like [61]

h(x, v) = lim
ε→0

1
ε
〈V a(t + ε) − v〉

∣
∣
∣
∣
Xa(t)=x,V a(t)=v

. (26)

In this step the average represents time averaging. That
is, neither a stroboscopic time averaging nor a constraint
for the time-delayed position has to be introduced.

Having obtained h(x, v), one can apply the data-
analysis method to the entire driven feedback control
system (21). That is, in a second step a time series
{Xb(tn), V b(tn), n = 1, . . . , N b} recorded from the full
system satisfying equation (21) with u �= 0 is evaluated.
With regard to our aforementioned motor control prob-
lem, this implies that acoustically paced tapping move-
ments have to be examined. In this case we have β > 0 in
the tapping model (22). Averaging equation (25) over x
and v under the constraint Xb(tk−τ) = y, we then obtain

〈h(x, v)〉|Xb(tk−τ)=y + u(y, tk) =

lim
ε→0

1
ε
〈V b(tk + ε) − v〉

∣
∣
∣
∣
Xb(tk−τ)=y

. (27)

That is, in the second step stroboscopic time averaging
and the constraint X(tk − τ) = y for the time-delayed
variable are used. Recall that the function h(x, v) has been
determined in the first step of our analysis. Consequently,
the expression 〈h(x, v)〉|Xb(tk−τ)=y can be derived from

the time series {Xb(tn), V b(tn), n = 1, . . . , N b}. Placing
the term 〈h(x, v)〉|Xb(tk−τ)=y on the right hand side of
equation (27), we obtain

u(y, tk) = lim
ε→0

1
ε
〈V b(tk + ε) − V b(tk)〉

∣
∣
∣
∣
Xb(tk−τ)=y

− 〈h(x, v)〉|Xb(tk−τ)=y . (28)

To check whether the a priori assumption that the re-
garded system can be described by equation (21) is cor-
rect the self-consistency test discussed in Section 2.3 can
be applied. The only difference to the examples studied in
Section 3.1 is that one has to simulate a second-order dif-
ferential equation as given in equation (21) or more specif-
ically by equation (24) in order to compute Prec. Let us
illustrate the two-step approach for computer generated
data sets derived from the human tapping model (24).

We solved equation (24) numerically for β = 0 and
β = 0.4 (other parameters: a = 0.25, τ = 0.4, T =
7.14, Q = 0.2, δt = 0.01). In doing so, we generated
two time series [Xa(tn), V a(tn)] with n = 1, . . . , Na and
[Xb(tn), V b(tn)] with n = 1, . . . , N b (Na = N b = 109)
representing self-paced and paced tapping, respectively.
We computed h(x, v) from [Xa(tn), V a(tn)] on a square
domain Ωa = [−2, 2]× [−2, 2] using equation (26). To this
end, Ωa was discretized into 322 bins with ∆x = 4/32
and ∆v = 4/32 and equation (26) was implemented on
the computer just as discussed in Section 2.2.3 but with
simple time averaging instead of stroboscopic time aver-
aging (see discussion above). Subsequently, we estimated
u(y, t) from [Xb(tn), V b(tn)] on Ωb = [−2, 2]× [0, T ] using
equation (28). Again, we discretized Ωb for that purpose
into 322 bins with ∆y = 4/32 and ∆t = T/32 and equa-
tion (28) was implemented on the computer as described
in Section 2.2.3.

Figure 9 shows the result of our reconstruction of the
drift component h(x, v). The estimated component h(x, v)
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Fig. 10. Reconstruction of the drift component u(y, t) of the model (24) in the (y, t) plane (three-dimensional surface plot).
Inlet: contour plot with ∆C = 0.5.
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Fig. 11. Estimates for the drift component u(y, t) of the tapping model (24). Panel (a): u versus t for several parameters y.
Panel (b): u versus y for several parameters t. Notations as in Figure 2.

is plotted in the (x, v) plane (panel (a)) and is shown
as a contour plot (panel (b)). In addition, the original
function h(x, v) is shown as dashed lines in panel b of
Figure 9. We found an excellent correspondence between
the reconstruction and the original.

Figures 10 and 11 illustrate the reconstruction of the
drift component u(y, t) which contains information about
the coupling between time-delayed feedback and driving

force. In Figure 10 the reconstruction of u(y, t) is shown
in the full (y, t) plane. In Figure 11 estimates of u(y, t) are
shown as functions of t for fixed parameters y (panel (a))
and as functions of y for fixed values of t (panel (b)).
Comparing these estimates of u(y, t) with the original
functions, we found that in general the estimates were
good approximations of the originals. However, for rela-
tively large amplitudes of y the standard deviation of the
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Fig. 12. Self-consistency test for computer generated data sets of the tapping model (24). Contour plots of the reconstructed
(solid lines) and original (symbols) probability densities P̃rec and P̃org defined by equation (29) are shown in the (x, v) plane
(∆C = 0.025/T ; for notations see Fig. 4).

estimates became large, see Figure 11b. Therefore, we de-
fined the reconstructed model in the (x, y) plane not on
the domain [−2, 2] × [−2, 2] but on the slightly smaller
domain [rmin, rmax] × [rmin, rmax] with rmin = −1.8 and
rmax = 1.8.

The result of the self-consistency test is shown in Fig-
ure 12 in terms of a contour plot of P ′

org and Prec in the
(x, v) plane. Note that in contrast to the contour plot in
Figure 4b that shows P ′

org and Prec in the (x, t) plane, in
Figure 12 we have eliminated the time variable t by time
averaging. That is, Figure 12 shows the function P̃ ′

org(x, v)
and P̃rec(x, v) defined by

P̃ ′
org(x, v) =

1
T

∫ T

0

P ′
org(x, v, t) dt,

P̃rec(x, v) =
1
T

∫ T

0

Prec(x, v, t) dt. (29)

If the computer generated data sets [Xa(tn), V a(tn)] and
[Xb(tn), V b(tn)] would correspond to experimental tap-
ping recordings, the self-consistency test would indicate
that the first-order statistical properties of the data sets
can indeed be explained in terms of a non-autonomous
stochastic delay differential equation model (21).

4 Conclusions

We showed how evolution equations of periodically driven
systems with time-delayed feedback can be extracted from

noisy data sets. On the basis of these evolution equations
differential effects of the time-delayed feedback forces and
the periodic driving forces can be identified. In doing so,
our study bridged the gap between studies of periodically
driven systems, on the one hand, and time-delayed sys-
tems, on the other.

By means of several computer generated data sets we
illustrated explicitly how to apply the proposed data-
analysis method. In all examples the reconstructions of
the driving forces and the time-delayed feedback forces
provided good approximations of the corresponding origi-
nal functions. In the first example we were able to identify
the additive interplay between the driving force and the
feedback force, whereas in the second example we suc-
ceeded in identifying a multiplicative interplay between
driver and feedback. In the final example related to paced
tapping, we were able to identify the structure of the
information-action coupling during paced tapping. More
precisely, we identified a function u that described how
the action (time-delayed by the sensory delay) was cou-
pled to the driving force. In sum, we demonstrated that
differential effects due to driving, on the one hand, and
feedback, on the other, can indeed be identified by the
proposed data-analysis method.

For the analysis of second-order dynamical systems
that can be cast into the form (21) a two-step ap-
proach was proposed. Using this approach, we were able
to circumvent the data acquisition problem of how to
fill a four-dimensional phase space with data points.
Roughly speaking, the two-step approach replaced the
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four-dimensional phase space by two two-dimensional
phase spaces. Since in general time series analysis can bet-
ter deal with two two-dimensional phase spaces than with
one four-dimensional phase space, there is a clear advan-
tage in applying the proposed two-step approach.

At several stages of our study we required some a pri-
ori knowledge about the data that we wanted to analyze.
First of all, we assumed that the data can be described
in terms of non-autonomous stochastic delay differential
equations. Furthermore, we assumed that quantitative in-
formation about the relevant driving frequencies and the
time delays is at our disposal. Indeed, some information
concerning the magnitudes of time delays in biological sys-
tems is available in the literature (see e.g. [17,22,101]).
Moreover, the time delays of technical applications can
often be deduced from the construction plans of these ap-
plications. Finally, the driving frequencies are often well
known from the context. In any case, the validity of a
priori knowledge should be checked. To this end, we pre-
sented a self-consistency test based on first-order statis-
tics. As stated in Section 2.3 higher-order statistics can
be used for that purpose as well [58,82].

The data-analysis method presented in our study can
be improved in many aspects. For example, adaptive bin
sizes may be used instead of constant bin sizes in order
to discretize the phase space of a system. More accurate
estimates for the conditional changes of state variables
such as Ẋ|X(t)=x or V̇ |V (t)=v may be employed [78]. In
this context not only higher-order approximation of con-
ditional state changes may be used [78] but also the en-
tire evolution of a state (i.e. its random path) may be
evaluated [76]. Finally, the data-analysis method of the
present study may be generalized in order to account for
measurement noise that can have considerably different
characteristic properties than dynamical noise [80,81].
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